The Mixed Finite Element Multigrid Method for Stokes Equations
نویسندگان
چکیده
The stable finite element discretization of the Stokes problem produces a symmetric indefinite system of linear algebraic equations. A variety of iterative solvers have been proposed for such systems in an attempt to construct efficient, fast, and robust solution techniques. This paper investigates one of such iterative solvers, the geometric multigrid solver, to find the approximate solution of the indefinite systems. The main ingredient of the multigrid method is the choice of an appropriate smoothing strategy. This study considers the application of different smoothers and compares their effects in the overall performance of the multigrid solver. We study the multigrid method with the following smoothers: distributed Gauss Seidel, inexact Uzawa, preconditioned MINRES, and Braess-Sarazin type smoothers. A comparative study of the smoothers shows that the Braess-Sarazin smoothers enhance good performance of the multigrid method. We study the problem in a two-dimensional domain using stable Hood-Taylor Q2-Q1 pair of finite rectangular elements. We also give the main theoretical convergence results. We present the numerical results to demonstrate the efficiency and robustness of the multigrid method and confirm the theoretical results.
منابع مشابه
AMGe - Coarsening Strategies and Application to the Oseen Equations
We provide some extensions to the AMGe method (algebraic multigrid method based on element interpolation), concerning the agglomeration process, the application to non-conforming elements, and the application to the mixed finite element discretization of the Oseen-linearized Navier-Stokes equations. This last point, using AMGe for mixed finite elements, gets straight-forward because of the avai...
متن کاملA new family of stable mixed finite elements for the 3D Stokes equations
A natural mixed-element approach for the Stokes equations in the velocity-pressure formulation would approximate the velocity by continuous piecewise-polynomials and would approximate the pressure by discontinuous piecewise-polynomials of one degree lower. However, many such elements are unstable in 2D and 3D. This paper is devoted to proving that the mixed finite elements of this Pk-Pk−1 type ...
متن کاملAn Algebraic Multigrid Method for Quadratic Finite Element Equations of Elliptic and Saddle Point Systems in 3d
In this work, we propose a robust and easily implemented algebraic multigrid method as a stand-alone solver or a preconditioner in Krylov subspace methods for solving either symmetric and positive definite or saddle point linear systems of equations arising from the finite element discretization of the vector Laplacian problem, linear elasticity problem in pure displacement and mixed displaceme...
متن کاملMixed Finite Element Methods for Incompressible Flow: Stationary Stokes Equations
In this article, we develop and analyze a mixed finite element method for the Stokes equations. Our mixed method is based on the pseudostress-velocity formulation. The pseudostress is approximated by the RaviartThomas (RT) element of index k ≥ 0 and the velocity by piecewise discontinuous polynomials of degree k. It is shown that this pair of finite elements is stable and yields quasi-optimal a...
متن کاملNewton multigrid least-squares FEM for the V-V-P formulation of the Navier-Stokes equations
We solve the V-V-P, vorticity-velocity-pressure, formulation of the stationary incompressible Navier-Stokes equations based on the least-squares finite element method. For the discrete systems, we use a conjugate gradient (CG) solver accelerated with a geometric multigrid preconditioner for the complete system. In addition, we employ a Krylov space smoother inside of the multigrid which allows ...
متن کاملA Nonconforming Multigrid Method for the Stationary Stokes Equations
An optimal-order W-cycle multigrid method for solving the stationary Stokes equations is developed, using PI nonconforming divergence-free finite elements.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2015 شماره
صفحات -
تاریخ انتشار 2015